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C h a p t e r  1

Complexity

A physician, a civil engineer, and a computer scientist were arguing about 
what was the oldest profession in the world. The physician remarked, 
“Well, in the Bible, it says that God created Eve from a rib taken out of 
Adam. This clearly required surgery, and so I can rightly claim that mine is 
the oldest profession in the world.” The civil engineer interrupted, and 
said, “But even earlier in the book of Genesis, it states that God created 
the order of the heavens and the earth from out of the chaos. This was the 
first and certainly the most spectacular application of civil engineering. 
Therefore, fair doctor, you are wrong: mine is the oldest profession in the 
world.” The computer scientist leaned back in her chair, smiled, and then 
said confidently, “Ah, but who do you think created the chaos?”

“The more complex the system, the more open it is to total breakdown” [5]. 
Rarely would a builder think about adding a new sub-basement to an 
existing 100-story building. Doing that would be very costly and would 
undoubtedly invite failure. Amazingly, users of software systems rarely 
think twice about asking for equivalent changes. Besides, they argue, it is 
only a simple matter of programming.

Our failure to master the complexity of software results in projects that are 
late, over budget, and deficient in their stated requirements. We often call 
this condition the software crisis, but frankly, a malady that has carried on 
this long must be called normal. Sadly, this crisis translates into the 
squandering of human resources—a most precious commodity—as well 
as a considerable loss of opportunities. There are simply not enough good 
developers around to create all the new software that users need. Further-
more, a significant number of the development personnel in any given 
organization must often be dedicated to the maintenance or preservation 
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of geriatric software. Given the indirect as well as the direct contribution of 
software to the economic base of most industrialized countries, and con-
sidering the ways in which software can amplify the powers of the individ-
ual, it is unacceptable to allow this situation to continue.

1.1 The Structure of Complex Systems

How can we change this dismal picture? Since the underlying problem springs 
from the inherent complexity of software, our suggestion is to first study how 
complex systems in other disciplines are organized. Indeed, if we open our eyes 
to the world about us, we will observe successful systems of significant complex-
ity. Some of these systems are the works of humanity, such as the Space Shuttle, 
the England/France tunnel, and large business organizations. Many even more 
complex systems appear in nature, such as the human circulatory system and the 
structure of a habanero pepper plant.

The Structure of a Personal Computer

A personal computer is a device of moderate complexity. Most are composed of 
the same major elements: a central processing unit (CPU), a monitor, a keyboard, 
and some sort of secondary storage device, usually either a CD or DVD drive and 
hard disk drive. We may take any one of these parts and further decompose it. For 
example, a CPU typically encompasses primary memory, an arithmetic/logic unit 
(ALU), and a bus to which peripheral devices are attached. Each of these parts 
may in turn be further decomposed: An ALU may be divided into registers and 
random control logic, which themselves are constructed from even more primitive 
elements, such as NAND gates, inverters, and so on.

Here we see the hierarchic nature of a complex system. A personal computer 
functions properly only because of the collaborative activity of each of its major 
parts. Together, these separate parts logically form a whole. Indeed, we can rea-
son about how a computer works only because we can decompose it into parts 
that we can study separately. Thus, we may study the operation of a monitor inde-
pendently of the operation of the hard disk drive. Similarly, we may study the 
ALU without regard for the primary memory subsystem.

Not only are complex systems hierarchic, but the levels of this hierarchy represent 
different levels of abstraction, each built upon the other, and each understandable 
by itself. At each level of abstraction, we find a collection of devices that collabo-
rate to provide services to higher layers. We choose a given level of abstraction to 
suit our particular needs. For instance, if we were trying to track down a timing 
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problem in the primary memory, we might properly look at the gate-level archi-
tecture of the computer, but this level of abstraction would be inappropriate if we 
were trying to find the source of a problem in a spreadsheet application. 

The Structure of Plants and Animals

In botany, scientists seek to understand the similarities and differences among 
plants through a study of their morphology, that is, their form and structure. 
Plants are complex multicellular organisms, and from the cooperative activity of 
various plant organ systems arise such complex behaviors as photosynthesis and 
transpiration.

Plants consist of three major structures (roots, stems, and leaves). Each of these 
has a different, specific structure. For example, roots encompass branch roots, 
root hairs, the root apex, and the root cap. Similarly, a cross-section of a leaf 
reveals its epidermis, mesophyll, and vascular tissue. Each of these structures is 
further composed of a collection of cells, and inside each cell we find yet another 
level of complexity, encompassing such elements as chloroplasts, a nucleus, and 
so on. As with the structure of a computer, the parts of a plant form a hierarchy, 
and each level of this hierarchy embodies its own complexity. 

All parts at the same level of abstraction interact in well-defined ways. For exam-
ple, at the highest level of abstraction, roots are responsible for absorbing water 
and minerals from the soil. Roots interact with stems, which transport these raw 
materials up to the leaves. The leaves in turn use the water and minerals provided 
by the stems to produce food through photosynthesis.

There are always clear boundaries between the outside and the inside of a given 
level. For example, we can state that the parts of a leaf work together to provide 
the functionality of the leaf as a whole and yet have little or no direct interaction 
with the elementary parts of the roots. In simpler terms, there is a clear separation 
of concerns among the parts at different levels of abstraction.

In a computer, we find NAND gates used in the design of the CPU as well as in 
the hard disk drive. Likewise, a considerable amount of commonality cuts across 
all parts of the structural hierarchy of a plant. This is God’s way of achieving an 
economy of expression. For example, cells serve as the basic building blocks in 
all structures of a plant; ultimately, the roots, stems, and leaves of a plant are all 
composed of cells. Yet, although each of these primitive elements is indeed a cell, 
there are many different kinds of cells. For example, there are cells with and with-
out chloroplasts, cells with walls that are impervious to water and cells with walls 
that are permeable, and even living cells and dead cells.
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In studying the morphology of a plant, we do not find individual parts that are 
each responsible for only one small step in a single larger process, such as photo-
synthesis. In fact, there are no centralized parts that directly coordinate the activi-
ties of lower-level ones. Instead, we find separate parts that act as independent 
agents, each of which exhibits some fairly complex behavior, and each of which 
contributes to many higher-level functions. Only through the mutual cooperation 
of meaningful collections of these agents do we see the higher-level functionality 
of a plant. The science of complexity calls this emergent behavior: The behavior 
of the whole is greater than the sum of its parts [6].

Turning briefly to the field of zoology, we note that multicellular animals exhibit 
a hierarchical structure similar to that of plants: Collections of cells form tissues, 
tissues work together as organs, clusters of organs define systems (such as the 
digestive system), and so on. We cannot help but again notice God’s awesome 
economy of expression: The fundamental building block of all animal matter is 
the cell, just as the cell is the elementary structure of all plant life. Granted, there 
are differences between these two. For example, plant cells are enclosed by rigid 
cellulose walls, but animal cells are not. Notwithstanding these differences, how-
ever, both of these structures are undeniably cells. This is an example of common-
ality that crosses domains.

A number of mechanisms above the cellular level are also shared by plant and 
animal life. For example, both use some sort of vascular system to transport nutri-
ents within the organism, and both exhibit differentiation by sex among members 
of the same species.

The Structure of Matter

The study of fields as diverse as astronomy and nuclear physics provides us with 
many other examples of incredibly complex systems. Spanning these two disci-
plines, we find yet another structural hierarchy. Astronomers study galaxies that 
are arranged in clusters. Stars, planets, and debris are the constituents of galaxies. 
Likewise, nuclear physicists are concerned with a structural hierarchy, but one on 
an entirely different scale. Atoms are made up of electrons, protons, and neutrons; 
electrons appear to be elementary particles, but protons, neutrons, and other parti-
cles are formed from more basic components called quarks. 

Again we find that a great commonality in the form of shared mechanisms unifies 
this vast hierarchy. Specifically, there appear to be only four distinct kinds of 
forces at work in the universe: gravity, electromagnetic interaction, the strong 
force, and the weak force. Many laws of physics involving these elementary 
forces, such as the laws of conservation of energy and of momentum, apply to 
galaxies as well as quarks.



CHAPTER 1 COMPLEXITY 7

The Structure of Social Institutions

As a final example of complex systems, we turn to the structure of social institu-
tions. Groups of people join together to accomplish tasks that cannot be done by 
individuals. Some organizations are transitory, and some endure beyond many 
lifetimes. As organizations grow larger, we see a distinct hierarchy emerge. 
Multinational corporations contain companies, which in turn are made up of divi-
sions, which in turn contain branches, which in turn encompass local offices, and 
so on. If the organization endures, the boundaries among these parts may change, 
and over time, a new, more stable hierarchy may emerge. 

The relationships among the various parts of a large organization are just like 
those found among the components of a computer, or a plant, or even a galaxy. 
Specifically, the degree of interaction among employees within an individual 
office is greater than that between employees of different offices. A mail clerk 
usually does not interact with the chief executive officer of a company but does 
interact frequently with other people in the mail room. Here, too, these different 
levels are unified by common mechanisms. The clerk and the executive are both 
paid by the same financial organization, and both share common facilities, such 
as the company’s telephone system, to accomplish their tasks.

1.2 The Inherent Complexity of Software

A dying star on the verge of collapse, a child learning how to read, white blood 
cells rushing to attack a virus: These are but a few of the objects in the physical 
world that involve truly awesome complexity. Software may also involve ele-
ments of great complexity; however, the complexity we find here is of a funda-
mentally different kind. As Brooks points out, “Einstein argued that there must be 
simplified explanations of nature, because God is not capricious or arbitrary. No 
such faith comforts the software engineer. Much of the complexity that he must 
master is arbitrary complexity” [1].

Defining Software Complexity

We do realize that some software systems are not complex. These are the largely 
forgettable applications that are specified, constructed, maintained, and used by 
the same person, usually the amateur programmer or the professional developer 
working in isolation. This is not to say that all such systems are crude and inele-
gant, nor do we mean to belittle their creators. Such systems tend to have a very 
limited purpose and a very short life span. We can afford to throw them away and 
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replace them with entirely new software rather than attempt to reuse them, repair 
them, or extend their functionality. Such applications are generally more tedious 
than difficult to develop; consequently, learning how to design them does not 
interest us.

Instead, we are much more interested in the challenges of developing what we 
will call industrial-strength software. Here we find applications that exhibit a very 
rich set of behaviors, as, for example, in reactive systems that drive or are driven 
by events in the physical world, and for which time and space are scarce 
resources; applications that maintain the integrity of hundreds of thousands of 
records of information while allowing concurrent updates and queries; and sys-
tems for the command and control of real-world entities, such as the routing of air 
or railway traffic. Software systems such as these tend to have a long life span, 
and over time, many users come to depend on their proper functioning. In the 
world of industrial-strength software, we also find frameworks that simplify the 
creation of domain-specific applications, and programs that mimic some aspect of 
human intelligence. Although such applications are generally products of 
research and development, they are no less complex, for they are the means and 
artifacts of incremental and exploratory development. 

The distinguishing characteristic of industrial-strength software is that it is 
intensely difficult, if not impossible, for the individual developer to comprehend 
all the subtleties of its design. Stated in blunt terms, the complexity of such sys-
tems exceeds the human intellectual capacity. Alas, this complexity we speak of 
seems to be an essential property of all large software systems. By essential we 
mean that we may master this complexity, but we can never make it go away. 

Why Software Is Inherently Complex

As Brooks suggests, “The complexity of software is an essential property, not an 
accidental one” [3]. We observe that this inherent complexity derives from four 
elements: the complexity of the problem domain, the difficulty of managing the 
development process, the flexibility possible through software, and the problems 
of characterizing the behavior of discrete systems.

The Complexity of the Problem Domain

The problems we try to solve in software often involve elements of inescapable 
complexity, in which we find a myriad of competing, perhaps even contradictory, 
requirements. Consider the requirements for the electronic system of a multi-
engine aircraft, a cellular phone switching system, or an autonomous robot. The 
raw functionality of such systems is difficult enough to comprehend, but now add 
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all of the (often implicit) nonfunctional requirements such as usability, perfor-
mance, cost, survivability, and reliability. This unrestrained external complexity is 
what causes the arbitrary complexity about which Brooks writes. 

This external complexity usually springs from the “communication gap” that 
exists between the users of a system and its developers: Users generally find it 
very hard to give precise expression to their needs in a form that developers can 
understand. In some cases, users may have only vague ideas of what they want in 
a software system. This is not so much the fault of either the users or the develop-
ers of a system; rather, it occurs because each group generally lacks expertise in 
the domain of the other. Users and developers have different perspectives on the 
nature of the problem and make different assumptions regarding the nature of the 
solution. Actually, even if users had perfect knowledge of their needs, we cur-
rently have few instruments for precisely capturing these requirements. The com-
mon way to express requirements is with large volumes of text, occasionally 
accompanied by a few drawings. Such documents are difficult to comprehend, are 
open to varying interpretations, and too often contain elements that are designs 
rather than essential requirements. 

A further complication is that the requirements of a software system often change 
during its development, largely because the very existence of a software develop-
ment project alters the rules of the problem. Seeing early products, such as design 
documents and prototypes, and then using a system once it is installed and opera-
tional are forcing functions that lead users to better understand and articulate their 
real needs. At the same time, this process helps developers master the problem 
domain, enabling them to ask better questions that illuminate the dark corners of a 
system’s desired behavior.

The task of the software development team 
is to engineer the illusion of simplicity.
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Because a large software system is a capital investment, we cannot afford to scrap 
an existing system every time its requirements change. Planned or not, systems 
tend to evolve over time, a condition that is often incorrectly labeled software 
maintenance. To be more precise, it is maintenance when we correct errors; it is 
evolution when we respond to changing requirements; it is preservation when we 
continue to use extraordinary means to keep an ancient and decaying piece of 
software in operation. Unfortunately, reality suggests that an inordinate percent-
age of software development resources are spent on software preservation.

The Difficulty of Managing the Development Process

The fundamental task of the software development team is to engineer the illusion 
of simplicity—to shield users from this vast and often arbitrary external complex-
ity. Certainly, size is no great virtue in a software system. We strive to write less 
code by inventing clever and powerful mechanisms that give us this illusion of 
simplicity, as well as by reusing frameworks of existing designs and code. How-
ever, the sheer volume of a system’s requirements is sometimes inescapable and 
forces us either to write a large amount of new software or to reuse existing soft-
ware in novel ways. Just a few decades ago, assembly language programs of only 
a few thousand lines of code stressed the limits of our software engineering abili-
ties. Today, it is not unusual to find delivered systems whose size is measured in 
hundreds of thousands or even millions of lines of code (and all of that in a high-
order programming language, as well). No one person can ever understand such a 
system completely. Even if we decompose our implementation in meaningful 
ways, we still end up with hundreds and sometimes thousands of separate mod-
ules. This amount of work demands that we use a team of developers, and ideally 
we use as small a team as possible. However, no matter what its size, there are 
always significant challenges associated with team development. Having more 
developers means more complex communication and hence more difficult coordi-
nation, particularly if the team is geographically dispersed, as is often the case. 
With a team of developers, the key management challenge is always to maintain a 
unity and integrity of design. 

The Flexibility Possible through Software 

A home-building company generally does not operate its own tree farm from 
which to harvest trees for lumber; it is highly unusual for a construction firm to 
build an onsite steel mill to forge custom girders for a new building. Yet in the 
software industry such practice is common. Software offers the ultimate flexibil-
ity, so it is possible for a developer to express almost any kind of abstraction. This 
flexibility turns out to be an incredibly seductive property, however, because it 
also forces the developer to craft virtually all the primitive building blocks on 
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which these higher-level abstractions stand. While the construction industry has 
uniform building codes and standards for the quality of raw materials, few such 
standards exist in the software industry. As a result, software development 
remains a labor-intensive business.

The Problems of Characterizing the Behavior of 
Discrete Systems 

If we toss a ball into the air, we can reliably predict its path because we know that 
under normal conditions, certain laws of physics apply. We would be very surprised 
if just because we threw the ball a little harder, halfway through its flight it sud-
denly stopped and shot straight up into the air.1 In a not-quite-debugged software 
simulation of this ball’s motion, exactly that kind of behavior can easily occur.

Within a large application, there may be hundreds or even thousands of variables 
as well as more than one thread of control. The entire collection of these vari-
ables, their current values, and the current address and calling stack of each pro-
cess within the system constitute the present state of the application. Because we 
execute our software on digital computers, we have a system with discrete states. 
By contrast, analog systems such as the motion of the tossed ball are continuous 
systems. Parnas suggests, “when we say that a system is described by a continu-
ous function, we are saying that it can contain no hidden surprises. Small changes 
in inputs will always cause correspondingly small changes in outputs” [4]. On the 
other hand, discrete systems by their very nature have a finite number of possible 
states; in large systems, there is a combinatorial explosion that makes this number 
very large. We try to design our systems with a separation of concerns, so that the 
behavior in one part of a system has minimal impact on the behavior in another. 
However, the fact remains that the phase transitions among discrete states cannot 
be modeled by continuous functions. Each event external to a software system has 
the potential of placing that system in a new state, and furthermore, the mapping 
from state to state is not always deterministic. In the worst circumstances, an 
external event may corrupt the state of a system because its designers failed to 
take into account certain interactions among events. When a ship’s propulsion 

1. Actually, even simple continuous systems can exhibit very complex behavior because 
of the presence of chaos. Chaos introduces a randomness that makes it impossible to pre-
cisely predict the future state of a system. For example, given the initial state of two drops 
of water at the top of a stream, we cannot predict exactly where they will be relative to one 
another at the bottom of the stream. Chaos has been found in systems as diverse as the 
weather, chemical reactions, biological systems, and even computer networks. Fortunately, 
there appears to be underlying order in all chaotic systems, in the form of patterns called 
attractors.
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system fails due to a mathematical overflow, which in turn was caused by some-
one entering bad data in a maintenance system (a real incident), we understand 
the seriousness of this issue. There has been a dramatic rise in software-related 
system failures in subway systems, automobiles, satellites, air traffic control sys-
tems, inventory systems, and so forth. In continuous systems this kind of behavior 
would be unlikely, but in discrete systems all external events can affect any part of 
the system’s internal state. Certainly, this is the primary motivation for vigorous 
testing of our systems, but for all except the most trivial systems, exhaustive test-
ing is impossible. Since we have neither the mathematical tools nor the intellec-
tual capacity to model the complete behavior of large discrete systems, we must 
be content with acceptable levels of confidence regarding their correctness.

1.3 The Five Attributes of a Complex System

Considering the nature of this complexity, we conclude that there are five 
attributes common to all complex systems. 

Hierarchic Structure

Building on the work of Simon and Ando, Courtois suggests the following:

Frequently, complexity takes the form of a hierarchy, whereby a complex system 
is composed of interrelated subsystems that have in turn their own subsystems, 
and so on, until some lowest level of elementary components is reached. [7]

Simon points out that “the fact that many complex systems have a nearly decom-
posable, hierarchic structure is a major facilitating factor enabling us to under-
stand, describe, and even ‘see’ such systems and their parts” [8]. Indeed, it is 
likely that we can understand only those systems that have a hierarchic structure.

It is important to realize that the architecture of a complex system is a function of 
its components as well as the hierarchic relationships among these components. 
“All systems have subsystems and all systems are parts of larger systems. . . . The 
value added by a system must come from the relationships between the parts, not 
from the parts per se” [9].
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Relative Primitives

Regarding the nature of the primitive components of a complex system, our expe-
rience suggests that:

The choice of what components in a system are primitive is relatively arbitrary 
and is largely up to the discretion of the observer of the system.

What is primitive for one observer may be at a much higher level of abstraction 
for another.

Separation of Concerns

Simon calls hierarchic systems decomposable because they can be divided into 
identifiable parts; he calls them nearly decomposable because their parts are not 
completely independent. This leads us to another attribute common to all complex 
systems:

Intracomponent linkages are generally stronger than intercomponent linkages. 
This fact has the effect of separating the high-frequency dynamics of the compo-
nents—involving the internal structure of the components—from the low-
frequency dynamics—involving interaction among components. [10]

The architecture of a complex system is a function of its components as well 
as the hierarchic relationships among these components.
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This difference between intra- and intercomponent interactions provides a clear 
separation of concerns among the various parts of a system, making it possible to 
study each part in relative isolation.

Common Patterns

As we have discussed, many complex systems are implemented with an economy 
of expression. Simon thus notes that:

Hierarchic systems are usually composed of only a few different kinds of sub-
systems in various combinations and arrangements. [11]

In other words, complex systems have common patterns. These patterns may 
involve the reuse of small components, such as the cells found in both plants and 
animals, or of larger structures, such as vascular systems, also found in both 
plants and animals.

Stable Intermediate Forms

Earlier, we noted that complex systems tend to evolve over time. Specifically, 
“complex systems will evolve from simple systems much more rapidly if there 
are stable intermediate forms than if there are not” [12]. In more dramatic terms:

A complex system that works is invariably found to have evolved from a simple 
system that worked. . . . A complex system designed from scratch never works 
and cannot be patched up to make it work. You have to start over, beginning with 
a working simple system. [13]

As systems evolve, objects that were once considered complex become the primi-
tive objects on which more complex systems are built. Furthermore, we can never 
craft these primitive objects correctly the first time: We must use them in context 
first and then improve them over time as we learn more about the real behavior of 
the system.

1.4 Organized and Disorganized Complexity

The discovery of common abstractions and mechanisms greatly facilitates our 
understanding of complex systems. For example, with just a few minutes of orien-
tation, an experienced pilot can step into a multiengine jet aircraft he or she has 
never flown before and safely fly the vehicle. Having recognized the properties 
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common to all such aircraft, such as the functioning of the rudder, ailerons, and 
throttle, the pilot primarily needs to learn what properties are unique to that par-
ticular aircraft. If the pilot already knows how to fly a given aircraft, it is far easier 
to learn how to fly a similar one.

The Canonical Form of a Complex System

This example suggests that we have been using the term hierarchy in a rather 
loose fashion. Most interesting systems do not embody a single hierarchy; 
instead, we find that many different hierarchies are usually present within the 
same complex system. For example, an aircraft may be studied by decomposing it 
into its propulsion system, flight-control system, and so on. This decomposition 
represents a structural, or “part of” hierarchy. 

Alternately, we can cut across the system in an entirely orthogonal way. For 
example, a turbofan engine is a specific kind of jet engine, and a Pratt and 
Whitney TF30 is a specific kind of turbofan engine. Stated another way, a jet 
engine represents a generalization of the properties common to every kind of jet 
engine; a turbofan engine is simply a specialized kind of jet engine, with proper-
ties that distinguish it, for example, from ramjet engines. 

This second hierarchy represents an “is a” hierarchy. In our experience, we have 
found it essential to view a system from both perspectives, studying its “is a” hier-
archy as well as its “part of” hierarchy. For reasons that will become clear in the 
next chapter, we call these hierarchies the class structure and the object structure of 
the system, respectively.2

For those of you who are familiar with object technology, let us be clear. In this 
case, where we are speaking of class structure and object structure, we are not 
referring to the classes and objects you create when coding your software. We are 
referring to classes and objects, at a higher level of abstraction, that make up com-
plex systems, for example, a jet engine, an airframe, the various types of seats, an 
autopilot subsystem, and so forth. You will recall from the earlier discussion on 
the attributes of a complex system that whatever is considered primitive is relative 
to the observer.

In Figure 1–1 we see the two orthogonal hierarchies of the system: its class struc-
ture and its object structure. Each hierarchy is layered, with the more abstract 

2. Complex software systems embody other kinds of hierarchies as well. Of particular im-
portance is the module structure, which describes the relationships among the physical 
components of the system, and the process hierarchy, which describes the relationships 
among the system’s dynamic components.
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classes and objects built on more primitive ones. What class or object is chosen as 
primitive is relative to the problem at hand. Looking inside any given level reveals 
yet another level of complexity. Especially among the parts of the object struc-
ture, there are close collaborations among objects at the same level of abstraction.

Combining the concept of the class and object structures together with the five 
attributes of a complex system (hierarchy, relative primitives [i.e., multiple levels 
of abstraction], separation of concerns, patterns, and stable intermediate forms), 
we find that virtually all complex systems take on the same (canonical) form, as 
we show in Figure 1–2. Collectively, we speak of the class and object structures 
of a system as its architecture.

Notice also that the class structure and the object structure are not completely 
independent; rather, each object in the object structure represents a specific 
instance of some class. (In Figure 1–2, note classes C3, C5, C7, and C8 and the 
number of the instances 03, 05, 07, and 08.) As the figure suggests, there are usu-
ally many more objects than classes of objects within a complex system. By 
showing the “part of” as well as the “is a” hierarchy, we explicitly expose the 
redundancy of the system under consideration. If we did not reveal a system’s 
class structure, we would have to duplicate our knowledge about the properties of 
each individual part. With the inclusion of the class structure, we capture these 
common properties in one place. 

Also from the same class structure, there are many different ways that these 
objects can be instantiated and organized. No one particular architecture can 
really be deemed “correct.” This is what makes system architecture challenging—
finding the balance between the many ways the components of a system can be 
structured, the five attributes of complex systems, and the needs of the system user.

Figure 1–1 The Key Hierarchies of Complex Systems
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Our experience is that the most successful complex software systems are those 
whose designs explicitly encompass well-engineered class and object structures 
and embody the five attributes of complex systems described in the previous sec-
tion. Lest the importance of this observation be missed, let us be even more 
direct: We very rarely encounter software systems that are delivered on time, that 
are within budget, and that meet their requirements, unless they are designed with 
these factors in mind.

The Limitations of the Human Capacity for 
Dealing with Complexity

If we know what the design of complex software systems should be like, then 
why do we still have serious problems in successfully developing them? This 

Figure 1–2 The Canonical Form of a Complex System
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concept of the organized complexity of software (whose guiding principles we 
call the object model) is relatively new. However, there is yet another factor that 
dominates: the fundamental limitations of the human capacity for dealing with 
complexity.

As we first begin to analyze a complex software system, we find many parts that 
must interact in a multitude of intricate ways, with little perceptible commonality 
among either the parts or their interactions; this is an example of disorganized 
complexity. As we work to bring organization to this complexity through the pro-
cess of design, we must think about many things at once. For example, in an air 
traffic control system, we must deal with the state of many different aircraft at 
once, involving such properties as their location, speed, and heading. Especially 
in the case of discrete systems, we must cope with a fairly large, intricate, and 
sometimes nondeterministic state space. Unfortunately, it is absolutely impossible 
for a single person to keep track of all of these details at once. Experiments by 
psychologists, such as those of Miller, suggest that the maximum number of 
chunks of information that an individual can simultaneously comprehend is on 
the order of seven, plus or minus two [14]. This channel capacity seems to be 
related to the capacity of short-term memory. Simon additionally notes that pro-
cessing speed is a limiting factor: It takes the mind about five seconds to accept a 
new chunk of information [15].

We are thus faced with a fundamental dilemma. The complexity of the software 
systems we are asked to develop is increasing, yet there are basic limits on our 
ability to cope with this complexity. How then do we resolve this predicament?

1.5 Bringing Order to Chaos

Certainly, there will always be geniuses among us, people of extraordinary skill 
who can do the work of a handful of mere mortal developers, the software engi-
neering equivalents of Frank Lloyd Wright or Leonardo da Vinci. These are the 
people whom we seek to deploy as our system architects: the ones who devise 
innovative idioms, mechanisms, and frameworks that others can use as the archi-
tectural foundations of other applications or systems. However, “The world is 
only sparsely populated with geniuses. There is no reason to believe that the soft-
ware engineering community has an inordinately large proportion of them” [2]. 
Although there is a touch of genius in all of us, in the realm of industrial-strength 
software we cannot always rely on divine inspiration to carry us through. There-
fore, we must consider more disciplined ways to master complexity. 
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The Role of Decomposition

“The technique of mastering complexity has been known since ancient times: 
divide et impera (divide and rule)” [16]. When designing a complex software sys-
tem, it is essential to decompose it into smaller and smaller parts, each of which 
we may then refine independently. In this manner, we satisfy the very real con-
straint that exists on the channel capacity of human cognition: To understand any 
given level of a system, we need only comprehend a few parts (rather than all 
parts) at once. Indeed, as Parnas observes, intelligent decomposition directly 
addresses the inherent complexity of software by forcing a division of a system’s 
state space [17].

Algorithmic Decomposition 

Most of us have been formally trained in the dogma of top-down structured 
design, and so we approach decomposition as a simple matter of algorithmic 
decomposition, wherein each module in the system denotes a major step in some 
overall process. Figure 1–3 is an example of one of the products of structured 
design, a structure chart that shows the relationships among various functional 
elements of the solution. This particular structure chart illustrates part of the 
design of a program that updates the content of a master file. It was automatically 
generated from a data flow diagram by an expert system tool that embodies the 
rules of structured design [18]. 

Figure 1–3 Algorithmic Decomposition
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Object-Oriented Decomposition 

We suggest that there is an alternate decomposition possible for the same prob-
lem. In Figure 1–4, we have decomposed the system according to the key abstrac-
tions in the problem domain. Rather than decomposing the problem into steps 
such as Get formatted update and Add checksum, we have identified objects such as 
Master File and Checksum, which derive directly from the vocabulary of the prob-
lem domain.

Although both designs solve the same problem, they do so in quite different ways. 
In this second decomposition, we view the world as a set of autonomous agents 
that collaborate to perform some higher-level behavior. Get Formatted Update
thus does not exist as an independent algorithm; rather, it is an operation associ-
ated with the object File of Updates. Calling this operation creates another object, 
Update to Card. In this manner, each object in our solution embodies its own 
unique behavior, and each one models some object in the real world. From this 
perspective, an object is simply a tangible entity that exhibits some well-defined 
behavior. Objects do things, and we ask them to perform what they do by sending 
them messages. Because our decomposition is based on objects and not algo-
rithms, we call this an object-oriented decomposition.

Algorithmic versus Object-Oriented Decomposition 

Which is the right way to decompose a complex system—by algorithms or by 
objects? Actually, this is a trick question because the right answer is that both 
views are important: The algorithmic view highlights the ordering of events, and 
the object-oriented view emphasizes the agents that either cause action or are the 
subjects on which these operations act. 

Figure 1–4 Object-Oriented Decomposition
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Categories of Analysis and Design Methods
We find it useful to distinguish between the terms method and methodology.
A method is a disciplined procedure for generating a set of models that 
describe various aspects of a software system under development, using 
some well-defined notation. A methodology is a collection of methods 
applied across the software development lifecycle and unified by process, 
practices, and some general, philosophical approach. Methods are impor-
tant for several reasons. Foremost, they instill a discipline into the develop-
ment of complex software systems. They define the products that serve as 
common vehicles for communication among the members of a develop-
ment team. Additionally, methods define the milestones needed by man-
agement to measure progress and to manage risk.

Methods have evolved in response to the growing complexity of software 
systems. In the early days of computing, one simply did not write large pro-
grams because the capabilities of our machines were greatly limited. The 
dominant constraints in building systems were then largely due to hard-
ware: Machines had small amounts of main memory, programs had to con-
tend with considerable latency within secondary storage devices such as 
magnetic drums, and processors had cycle times measured in the hun-
dreds of microseconds. In the 1960s and 1970s the economics of comput-
ing began to change dramatically as hardware costs plummeted and 
computer capabilities rose. As a result, it was more desirable and now 
finally economical to automate more and more applications of increasing 
complexity. High-order programming languages entered the scene as 
important tools. Such languages improved the productivity of the individual 
developer and of the development team as a whole, thus ironically pressur-
ing us to create software systems of even greater complexity. 

Many design methods were proposed during the 1960s and 1970s to 
address this growing complexity. The most influential of them was top-down 
structured design, also known as composite design. This method was 
directly influenced by the topology of traditional high-order programming 
languages, such as FORTRAN and COBOL. In these languages, the fun-
damental unit of decomposition is the subprogram, and the resulting pro-
gram takes the shape of a tree in which subprograms perform their work by 
calling other subprograms. This is exactly the approach taken by top-down 
structured design: One applies algorithmic decomposition to break a large 
problem down into smaller steps.

Since the 1960s and 1970s, computers of vastly greater capabilities have 
evolved. The value of structured design has not changed, but as Stein 
observes, “Structured programming appears to fall apart when applications 
exceed 100,000 lines or so of code” [19]. Dozens of design methods have 
been proposed, many of them invented to deal with the perceived short-
comings of top-down structured design. The more interesting and successful 
design methods are cataloged by Peters [20], by Yau and Tsai [21], and in 
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However, the fact remains that we cannot construct a complex system in both 
ways simultaneously, for they are completely orthogonal views.3 We must start 

a comprehensive survey by Teledyne Brown Engineering [22]. Perhaps not 
surprisingly, many of these methods are largely variations on a similar 
theme. Indeed, as Sommerville suggests, most methods can be catego-
rized as one of three kinds [23]:

■ Top-down structured design
■ Data-driven design
■ Object-oriented design

Top-down structured design is exemplified by the work of Yourdon and 
Constantine [24], Myers [25], and Page-Jones [26]. The foundations of this 
method derive from the work of Wirth [27, 28] and Dahl, Dijkstra, and Hoare 
[29]; an important variation on structured design is found in the design 
method of Mills, Linger, and Hevner [30]. Each of these variations applies 
algorithmic decomposition. More software has probably been written using 
these design methods than with any other. Nevertheless, structured design 
does not address the issues of data abstraction and information hiding, nor 
does it provide an adequate means of dealing with concurrency. Structured 
design does not scale up well for extremely complex systems, and this method 
is largely inappropriate for use with object-based and object-oriented pro-
gramming languages.

Data-driven design is best exemplified by the early work of Jackson [31, 32] 
and the methods of Orr [33]. In this method, mapping system inputs to out-
puts derives the structure of a software system. As with structured design, 
data-driven design has been successfully applied to a number of complex 
domains, particularly information management systems, which involve direct 
relationships between the inputs and outputs of the system but require little 
concern for time-critical events.

The underlying concept of object-oriented analysis is that one should 
model software systems as collections of cooperating objects, treating indi-
vidual objects as instances of a class within a hierarchy of classes. Object-
oriented analysis and design directly reflects the topology of high-order 
programming languages such as Smalltalk, Object Pascal, C++, the Com-
mon Lisp Object System (CLOS), Ada, Eiffel, Python, Visual C#, and Java.

3. Langdon suggests that this orthogonality has been studied since ancient times. As he 
states, “C. H. Waddington has noted that the duality of views can be traced back to the an-
cient Greeks. A passive view was proposed by Democritus, who asserted that the world was 
composed of matter called atoms. Democritus’ view places things at the center of focus. On 
the other hand, the classical spokesman for the active view is Heraclitus, who emphasized 
the notion of process” [34].
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decomposing a system either by algorithms or by objects and then use the result-
ing structure as the framework for expressing the other perspective.

Our experience leads us to apply the object-oriented view first because this 
approach is better at helping us organize the inherent complexity of software sys-
tems, just as it helped us to describe the organized complexity of complex systems 
as diverse as computers, plants, galaxies, and large social institutions. As we will 
discuss further in Chapter 2, object-oriented decomposition has a number of 
highly significant advantages over algorithmic decomposition. Object-oriented 
decomposition yields smaller systems through the reuse of common mechanisms, 
thus providing an important economy of expression. Object-oriented systems are 
also more resilient to change and thus better able to evolve over time because 
their design is based on stable intermediate forms. Indeed, object-oriented decom-
position greatly reduces the risk of building complex software systems because 
they are designed to evolve incrementally from smaller systems in which we 
already have confidence. Furthermore, object-oriented decomposition directly 
addresses the inherent complexity of software by helping us make intelligent 
decisions regarding the separation of concerns in a large state space. 

The Applications section of this book demonstrates these benefits through several 
applications, drawn from a diverse set of problem domains. The sidebar in this 
chapter, Categories of Analysis and Design Methods, further compares and con-
trasts the object-oriented view with more traditional approaches to design.

The Role of Abstraction

Earlier, we referred to Miller’s experiments, from which he concluded that an 
individual can comprehend only about seven, plus or minus two, chunks of infor-
mation at one time. This number appears to be independent of information con-
tent. As Miller himself observes, “The span of absolute judgment and the span of 
immediate memory impose severe limitations on the amount of information that 
we are able to receive, process and remember. By organizing the stimulus input 
simultaneously into several dimensions and successively into a sequence of 
chunks, we manage to break . . . this informational bottleneck” [35]. In contempo-
rary terms, we call this process chunking or abstraction.

As Wulf describes it, “We (humans) have developed an exceptionally powerful 
technique for dealing with complexity. We abstract from it. Unable to master the 
entirety of a complex object, we choose to ignore its inessential details, dealing 
instead with the generalized, idealized model of the object” [36]. For example, 
when studying how photosynthesis works in a plant, we can focus on the chemical 
reactions in certain cells in a leaf and ignore all other parts, such as the roots and 
stems. We are still constrained by the number of things that we can comprehend 
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at one time, but through abstraction, we use chunks of information with increas-
ingly greater semantic content. This is especially true if we take an object-oriented 
view of the world because objects, as abstractions of entities in the real world, 
represent a particularly dense and cohesive clustering of information. Chapter 2 
examines the meaning of abstraction in much greater detail.

The Role of Hierarchy

Another way to increase the semantic content of individual chunks of information 
is by explicitly recognizing the class and object hierarchies within a complex soft-
ware system. The object structure is important because it illustrates how different 
objects collaborate with one another through patterns of interaction that we call 
mechanisms. The class structure is equally important because it highlights com-
mon structure and behavior within a system. Thus, rather than study each individ-
ual photosynthesizing cell within a specific plant leaf, it is enough to study one 
such cell because we expect that all others will exhibit similar behavior. Although 
we treat each instance of a particular kind of object as distinct, we may assume 
that it shares the same behavior as all other instances of that same kind of object. 
By classifying objects into groups of related abstractions (e.g., kinds of plant cells 
versus animal cells), we come to explicitly distinguish the common and distinct 
properties of different objects, which further helps us to master their inherent 
complexity [37].

Identifying the hierarchies within a complex software system is often not easy 
because it requires the discovery of patterns among many objects, each of which 
may embody some tremendously complicated behavior. Once we have exposed 
these hierarchies, however, the structure of a complex system, and in turn our 
understanding of it, becomes vastly simplified. Chapter 3 considers in detail the 
nature of class and object hierarchies, and Chapter 4 describes techniques that 
facilitate our identification of these patterns.

1.6 On Designing Complex Systems

The practice of every engineering discipline—be it civil, mechanical, chemical, 
electrical, or software engineering—involves elements of both science and art. As 
Petroski eloquently states, “The conception of a design for a new structure can 
involve as much a leap of the imagination and as much a synthesis of experience 
and knowledge as any artist is required to bring to his canvas or paper. And once 
that design is articulated by the engineer as artist, it must be analyzed by the engi-
neer as scientist in as rigorous an application of the scientific method as any 
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scientist must make” [38]. Similarly, Dijkstra observes, “the programming 
challenge is a large-scale exercise in applied abstraction and thus requires the 
abilities of the formal mathematician blended with the attitude of the competent 
engineer” [39].

Engineering as a Science and an Art

The role of the engineer as artist is particularly challenging when the task is to 
design an entirely new system. Especially in the case of reactive systems and sys-
tems for command and control, we are frequently asked to write software for an 
entirely unique set of requirements, often to be executed on a configuration of tar-
get processors constructed specifically for this system. In other cases, such as the 
creation of frameworks, tools for research in artificial intelligence, or information 
management systems, we may have a well-defined, stable target environment, but 
our requirements may stress the software technology in one or more dimensions. 
For example, we may be asked to craft systems that are faster, have greater capac-
ity, or have radically improved functionality. In all these situations, we try to use 
proven abstractions and mechanisms (the “stable intermediate forms,” in Simon’s 
words) as a foundation on which to build new complex systems. In the presence 
of a large library of reusable software components, the software engineer must 
assemble these parts in innovative ways to satisfy the stated and implicit require-
ments, just as the painter or the musician must push the limits of his or her 
medium.

The Meaning of Design

In every engineering discipline, design encompasses the disciplined approach we 
use to invent a solution for some problem, thus providing a path from require-
ments to implementation. In the context of software engineering, Mostow sug-
gests that the purpose of design is to construct a system that:

■ Satisfies a given (perhaps informal) functional specification
■ Conforms to limitations of the target medium
■ Meets implicit or explicit requirements on performance and resource usage
■ Satisfies implicit or explicit design criteria on the form of the artifact
■ Satisfies restrictions on the design process itself, such as its length or cost, 

or the tools available for doing the design [40]

As Stroustrup suggests, “the purpose of design is to create a clean and relatively 
simple internal structure, sometimes also called an architecture. . . . A design is 
the end product of the design process” [41]. Design involves balancing a set of 
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competing requirements. The products of design are models that enable us to rea-
son about our structures, make trade-offs when requirements conflict, and in gen-
eral, provide a blueprint for implementation.

The Importance of Model Building 

The building of models has a broad acceptance among all engineering disciplines, 
largely because model building appeals to the principles of decomposition, 
abstraction, and hierarchy [42]. Each model within a design describes a specific 
aspect of the system under consideration. As much as possible, we seek to build 
new models upon old models in which we already have confidence. Models give 
us the opportunity to fail under controlled conditions. We evaluate each model in 
both expected and unusual situations, and then we alter them when they fail to 
behave as we expect or desire.

We have found that in order to express all the subtleties of a complex system, we 
must use more than one kind of model. For example, when designing a personal 
computer, an electrical engineer must take into consideration the component-level 
view of the system as well as the physical layout of the circuit boards. This com-
ponent view forms a logical picture of the design of the system, which helps the 
engineer to reason about the cooperative behavior of the components. The board 
layout represents the physical packaging of these components, constrained by the 
board size, available power, and the kinds of components that exist. From this 
view, the engineer can independently reason about factors such as heat dissipation 
and manufacturability. The board designer must also consider dynamic as well as 
static aspects of the system under construction. Thus, the electrical engineer uses 
diagrams showing the static connections among individual components, as well 
as timing diagrams that show the behavior of these components over time. The 
engineer can then employ tools such as oscilloscopes and digital analyzers to val-
idate the correctness of both the static and dynamic models.

The Elements of Software Design Methodologies 

Clearly, there is no magic, no “silver bullet” [43] that can unfailingly lead the 
software engineer down the path from requirements to the implementation of a 
complex software system. In fact, the design of complex software systems does 
not lend itself at all to cookbook approaches. Rather, as noted earlier in the fifth 
attribute of complex systems, the design of such systems involves an incremental 
and iterative process.

Still, sound design methods do bring some much-needed discipline to the devel-
opment process. The software engineering community has evolved dozens of dif-
ferent design methodologies, which we can loosely classify into three categories 
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(see the Categories of Analysis and Design Methods sidebar). Despite their differ-
ences, all of these have elements in common. Specifically, each includes the 
following:

■ Notation The language for expressing each model
■ Process The activities leading to the orderly construction of the system’s 

models
■ Tools The artifacts that eliminate the tedium of model building and 

enforce rules about the models themselves, so that errors and 
inconsistencies can be exposed

A sound design method is based on a solid theoretical foundation yet offers 
degrees of freedom for artistic innovation.

The Models of Object-Oriented Development 

Is there a “best” design method? No, there is no absolute answer to this question, 
which is actually just a veiled way of asking the earlier question: What is the best 
way to decompose a complex system? To reiterate, we have found great value in 
building models that are focused on the “things” we find in the problem space, 
forming what we refer to as an object-oriented decomposition.

Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition. By applying object-oriented design, we create software 
that is resilient to change and written with economy of expression. We achieve a 
greater level of confidence in the correctness of our software through an intelli-
gent separation of its state space. Ultimately, we reduce the risks inherent in 
developing complex software systems. 

In this chapter, we have made a case for using object-oriented analysis and design 
to master the complexity associated with developing software systems. Addition-
ally, we have suggested a number of fundamental benefits to be derived from 
applying this method. Before we present the notation and process of object-ori-
ented design, however, we must study the principles on which object-oriented 
development is founded, namely, abstraction, encapsulation, modularity, hierar-
chy, typing, concurrency, and persistence.

Summary

■ Software is inherently complex; the complexity of software systems often 
exceeds the human intellectual capacity.
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■ The task of the software development team is to engineer the illusion of 
simplicity.

■ Complexity often takes the form of a hierarchy; it is useful to model both 
the “is a” and the “part of” hierarchies of a complex system.

■ Complex systems generally evolve from stable intermediate forms.
■ There are fundamental limiting factors of human cognition; we can address 

these constraints through the use of decomposition, abstraction, and 
hierarchy.

■ Complex systems can be viewed by focusing on either things or processes; 
there are compelling reasons for applying object-oriented decomposition, in 
which we view the world as a meaningful collection of objects that collabo-
rate to achieve some higher-level behavior.

■ Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition; object-oriented design uses a notation and process 
for constructing complex software systems and offers a rich set of models 
with which we may reason about different aspects of the system under 
consideration.
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